Original Russian Text Copyright © 2001 by M. Pudovik, Krepysheva, Kharitonov, A. Pudovik.

Reactions of Trimethylsilyl Isocyanate with Alcohols and Phenols

M. A. Pudovik, N. E. Krepysheva, D. I. Kharitonov, and A. N. Pudovik

Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Kazan, Tatarstan, Russia

Received December 21, 1999

Abstract—Mono- and diphenols add to trimethyl isocyanate on heating to give the corresponding aryl urethanes. Ethanol reacts with trimethylsilyl isocyanate to give ethyl urethane and ethyl allophanate in a ratio determined by reaction conditions.

Reactions of phosphorylated isocyanates with protic nucleophiles have been studied in detail, and the results are summarized in [1]. These reactions are widely and successfully used for preparation of various organophosphorus derivatives. However, the organosilicon analog, trimethylsilyl isocyanate **I**, practically was not involved in such reactions. It is known only that amines add to trimethylsilyl isocyanate **I** to form silylated ureas [2, 3]. At the same time, reactions of tri- and tetraisocyanatosilanes with alcohols result in substitution of isocyanate groups by alkoxy groups, instead of addition [4]. Trimethylsilyl isocyanate can be relatively simply prepared from cheap reagents [5, 6], and it shows promise for organic synthesis.

In this work we studied the reactions of isocyanate I with phenol, resorcinol, and ethanol. Reaction of I with phenol was performed both in a solvent and without a solvent. In both cases the final product is phenyl urethane III, but in the latter case its yield is higher.

$$\begin{split} \text{Me}_{3}\text{SiNCO} + \text{PhOH} &\longrightarrow [\text{Me}_{3}\text{SiNHC(O)OPh}] \\ \textbf{I} & \textbf{II} \\ &\xrightarrow{\text{PhOH}} & \text{H}_{2}\text{NC(O)OPh}. \\ & \textbf{III} \end{split}$$

Apparently, the reaction initially yields the addition

product, silylated urethane \mathbf{II} , which under the action of phenol transforms into the final product \mathbf{III} . The highest yield is attained at the ratio isocyanate: phenol = 1:2. The reaction of isocyanate \mathbf{I} with resorcinol gives compound \mathbf{VI} with two urethane fragments. In this case the reaction probably also involves intermediate formation of addition product \mathbf{V} which is desilylated under the action of resorcinol.

$$2\mathbf{I} + 2 \underbrace{\begin{array}{c} OH \\ OH \\ OH \\ \hline \\ IV \end{array}} \underbrace{\begin{array}{c} OC(O)NHSiMe_3 \\ OC(O)NHSiMe_3 \\ \hline \\ V \\ OC(O)NH_2 \\ \hline \\ OC(O)NH_2 \\ \hline \\ VII \\ \hline \end{array}}_{OSiMe_3}$$

In contrast to phenols, alcohols add to isocyanate I to give two products, alkyl urethanes and alkyl allophanates, in the ratio depending on the reaction conditions. Isocyanate I reacts with ethanol in toluene on heating for several hours to give ethyl urethane IX and ethyl allophanate XI in yields of 54 and 27%, respectively. When the same reaction was performed without a solvent, the yield of XI increased to 44%, and that of IX decreased to 39%.

The first reaction stage involves addition of alcohol to the isocyanato group of **I** to form silylated urethane **VIII**. The latter contains a labile Si–N bond which is readily cleaved under the action of excess alcohol to form urethane **IX** (pathway *I*). Concurrently, silyl urethane **VIII** reacts with the initial isocyanate I (pathway 2) to give silicon-containing allophanate **X**. The latter under the action of ethanol readily transforms into allophanate **XI** by cleavage of the Si–N bond. These reactions can be considered as a new convenient method for generation of the urethane fragment from hydroxyl-containing compounds. Trimethylsilyl isocyanate does not react with acetic acid on heating for several hours.

EXPERIMENTAL

The ¹H NMR spectra were taken on a Varian T-60 spectrometer, internal reference TMS.

Phenyl urethane III. *a.* A mixture of 2.12 g of phenol and 3.52 g of isocyanate **I** was heated for 5 h at 100°C. The resulting crystals were separated, washed with benzene, and recrystallized from ethanol–benzene. Yield of **III** 1.8 g (71%), mp 149°C [7]. IR spectrum (KBr), v, cm⁻¹: 1700 (C=O); 3180, 3270, 3330, 3410 (NH₂). Found, %: C 61.47; H 5.16; N 10.48. C₇H₇NO₂. Calculated, %: C 61.20; H 5.10; N 10.20.

b. A solution of 3.36 g of phenol and 2.74 g of isocyanate **I** in 20 ml of toluene was refluxed for 7 h. The crystals were filtered off and washed with benzene. Yield of **III** 1.38 g (56%), mp 149°C.

m-Phenylene diurethane VI. A mixture of 2.2 g of resorcinol and 2.3 g of trimethylsilyl isocyanate was heated for 8 h at 110°C. The crystals that formed on cooling were washed with ether and alcohol. Yield of VI 0.62 g (31%), mp 188–190°C [8]. IR spectrum (KBr), v, cm⁻¹: 1690–1720 (C=O), 3180–3410 (NH₂). Found, %: C 48.57; H 4.08; N 14.47. C₈H₈N₂O₄. Calculated, %: C 49.02; H 4.08; N 14.28. Vacuum fractionation of the mother liquor gave 0.72 g of a mixture consisting of 1,2-bis(trimethylsiloxy)benzene VII and an impurity of resorcinol, bp 124–127°C (10 mm), n_D^{20} 1.4767 [9]. ¹H NMR spectrum (CHCl₃), δ, ppm: 0.15 s (18H, SiMe₃); 6.95–7.33 m (4H, C₆H₄).

Reaction of trimethylsilyl isocyanate with ethanol. *a.* A mixture of 2.12 g of anhydrous ethanol and 3.52 g of trimethylsilyl isocyanate was heated for 5 h at 100°C. The resulting crystals of **XI** were filtered off and washed with benzene. Yield of **XI** 0.9 g (44%), mp 189–191°C [10]. IR spectrum (KBr), v, cm⁻¹: 1695, 1740 (C=O). ¹H NMR spectrum (DMSO- d_6), δ , ppm: 7.38 s (2H, NH₂); 9.95 s (1H, NH). From the mother liquor, after removal of volatiles, 0.61 g (39%) of ethyl urethane **IX** was isolated, mp 48–50°C [11].

b. A solution of 2.33 g of ethanol and 3.89 g of I in 15 ml of toluene was heated for 7 h. The resulting crystals of XI were filtered off and washed with benzene. Yield of XI 0.61 g (27%), mp 188–190°C. From the mother liquor, after removal of volatiles, 1.23 g (54%) of ethyl urethane was isolated, mp 48–50°C.

REFERENCES

- Shokol, V.A. and Kozhushko, B.N., *Izotsianaty fos-fora* (Phosphorus Isocyanates), Kiev: Naukova Dumka, 1992, p. 52.
- 2. Goubean, J. and Heubach, E., *Chem. Ber.*, 1960, vol. 93, no. 5, pp. 1117–1125.
- 3. Neville, R.G. and McGree, J.J., *Can. J. Chem.*, 1963, vol. 41, no. 9, pp. 2123–2129.
- 4. Abe, Y., Motoyama, K., Kobayashi, T., Iwasaki, S., and Gunji, T., *J. Chem. Soc. Jpn.*, 1996, vol. 69, no. 11, pp. 969–974.
- 5. Voronkov, M.G., Roman, V.K., and Maletina, E.L., *Zh. Obshch. Khim.*, 1979, vol. 49, no. 7, p. 1673.
- Kozyukov, V.P., Dobrovinskaya, E.K., and Mironov, V.F., *Zh. Obshch. Khim.*, 1974, vol. 46, no. 7, pp. 1531–1536.
- 7. Scholl, R. and Kacer, F., *Chem. Ber.*, 1900, vol. 33, pp. 51–54.
- 8. Gattermann, J., Lieb. Ann., 1888, vol. 244, pp. 42–48.
- 9. Lebedev, E.P., Baburina, V.A., and Reikhsfel'd, V.O., *Zh. Obshch. Khim.*, 1975, vol. 45, no. 2, pp. 348–351.
- 10. Schroeter, G. and Lewinski, M., *Chem. Ber.*, 1893, vol. 26, pp. 2171–2174.
- 11. Schmidt, O., *Chem. Ber.*, 1903, vol. 36, pp. 2459–2482.